

Newsletter 2010-05-10

Advanced Simulation Control

Page 1 (total 4)

Advanced Simulation Control

Prerequisites: Craft.CASE common using.

There are some cases in which during the

simulation the user does not need to decide

all the decisions himself because some of

them are already decided. Craft.CASE has a

unique ability to remember the decision and

use the same or the derived decision later.

The following example shows a customer

buying either a small thing, or a piece of

furniture. The customer has already decided

what to buy so the answer to the second pair

of questions is redundant (see the picture

left).

The standard behaviour of the simulator is

that it lets us decide on every condition it

meets, even though it might be semantically

the same condition all the time. The reason

is that the computer can’t understand the

meaning of human sentences.

Newsletter 2010-05-10

Advanced Simulation Control

CRAFT.CASE Ltd.

Tel.: +44 (0)20 3287 4580

sales@craftcase.com

www.craftcase.com

Prerequisites:

Craft.CASE common using

Page 2 (total 4)

However, Craft.CASE has an additional module, Advanced simulation, through which you

can control the simulation. You can “tell” Craft.CASE to remember your decision and to

decide on your behalf later. The module uses two properties to reach this behaviour. One

property, called variable-function, lets Craft.CASE remember your decision. The second

property, condition-function, lets Craft.CASE decide on the condition. Both of the properties

must be defined on transition-start, transition-end and communication lines. They are of type

‘Function’ and their initial value must be {:C| nil}.

These functions, like any other mathematical function, have a result. Here we will use only

functions that have result as one of the following: true, false, nil. Inside the condition-function

there must be either one of true, false, nil, which is the direct function result, or some more

complex statement, that must also have the result true, false or nil.

When the Craft.CASE simulator reaches the condition with the result of its condition-function

equal to nil (notice that the initial value fulfils this), it lets you decide on the condition,

because nil means ‘not known yet’. If the result of condition-function is true instead of the

initial nil, it doesn’t ask you, but it assumes that the condition is fulfilled and goes through

this condition. On the other hand if the result is false, like in {:C| false}, it also doesn’t ask

you, but it assumes that the condition is not fulfilled and doesn’t go through this condition.

Newsletter 2010-05-10

Advanced Simulation Control

CRAFT.CASE Ltd.

Tel.: +44 (0)20 3287 4580

sales@craftcase.com

www.craftcase.com

Prerequisites:

Craft.CASE common using

Page 3 (total 4)

condition-function

Result nil true false

Meaning not known yet condition is fulfilled condition is not fulfilled

Simulator asks doesn’t ask doesn’t ask

Goes through depends on reply yes no

While the condition-functions apply only to the lines with condition and help Craft.CASE to

decide on the conditions, the variable-functions apply to all the lines and help Craft.CASE to

remember the context of past data.

How can Craft.CASE remember the way the simulator already passed through? The answer is

variables. A variable is a piece of memory in which Craft.CASE can store a value. Each

variable has a name in the form C[name]. For our example on the first page we will use two

variables: C[small] and C[big]. When we want to store a value in the variable we use an

assignment command C[name] := value. In our example we want to store the value true in the

variables, so we will use assignment commands C[small] := true and C[big] := true. The

whole variable-functions will be {:C| C[small] := true} and {:C| C[big] := true}. The first

will be set on the transition with ‘Wants to buy a small thing’ condition and the second will be

set on the transition with ‘Wants to buy a piece of furniture’ condition.

The syntax of functions is very strict, so you must adhere to the rules. Craft.CASE checks the

syntax against some mistakes. To check the syntax and to store the function in the condition-

function or variable-function property, press Ctrl+Enter immediately after you type the

function in the property. You can also press the right mouse over the white box with the

function and select Accept. If something is wrong, the message Token not expected -> will

appear near the mistake. If you want to place more than one assignment commands in the

variable-function, end the first command with a full stop sign (.). Don’t forget to press

Ctrl+Enter in the Project settings window when typing the initial value of both properties.

At the beginning of simulation press the right mouse button over the large white box with a

diagram in the simulator, and select from the context menu Run script -> advanced-

simulation -> activate. Now when the simulator reaches the first pair of conditions it

evaluates the condition-functions of both the transitions first. Both functions return nil so the

simulator asks you which conditions to select. After you select some condition (e.g. small

Newsletter 2010-05-10

Advanced Simulation Control

CRAFT.CASE Ltd.

Tel.: +44 (0)20 3287 4580

sales@craftcase.com

www.craftcase.com

Prerequisites:

Craft.CASE common using

Page 4 (total 4)

thing), its variable-function will evaluate assigning true value into the appropriate variable

(C[small]:=true). The second variable remains unassigned as the variable-function of the not-

selected transition has not been evaluated (C[big] remains unassigned, i.e. its value will be

nil). When the simulation reaches the second pair of conditions, we want the simulator to use

the remembered decision. We will set the condition-functions of the second pair of conditions

to {:C| C[small] is true} and {:C| C[big] is true}.

C[small] is true and C[big] is true are statements. Statements have, similarly to functions,

a result, in this case one of true, false or nil. These statements test whether the values stored in

appropriate variables are true. If yes, the statement has the result true. If there is something

else than true, or the variable has no assigned value (i.e. there is nil), the result is false.

In statements you can use variables (C[name]), constants (true, false, nil), predicates (<, <=,

=, >=, >, <>, is), logic conjunctions (and, or, not) and parentheses. The difference between

the ‘is’ and ‘=’ predicates is that the ‘is’ predicate always has the result of true or false, while

‘=’ can also have a result of nil.

Now when the simulation reaches the second pair of conditions, it evaluates both condition-

functions first, and depending on their results, it either asks or automatically goes through

some branch. If we have previously selected the left branch (“wants to buy a small thing”),

the first branch (“bought a small thing”) is now true and the second one (“bought a piece of

furniture”) is false. Simulator doesn’t ask but goes through the left branch.

How to get the Advanced Simulation module

To get our module, download it from http://www.craftcase.com/Page/Modules.aspx

Look for more information

• The C.C language tutorial can be found in the Resources section of our web page.

